If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5x+1.25=0
a = 1; b = -5; c = +1.25;
Δ = b2-4ac
Δ = -52-4·1·1.25
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-2\sqrt{5}}{2*1}=\frac{5-2\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+2\sqrt{5}}{2*1}=\frac{5+2\sqrt{5}}{2} $
| q÷3=2 | | y=(-2-5) | | y=(0-5) | | 6=q-78 | | y=(-1-5) | | 5x3-20x=0 | | -4(y+2)=4y-8+2(2y+8) | | -5y-4=-2(y-4) | | 8(v+2)=-5v+42 | | -37=5x-2 | | 3/7(2x-3)=9 | | 5(x-4)-6=-3(-7x+8)-2x | | -2(u+5)=-7u+35 | | -4y+48=8(y-3) | | -5=4u+3 | | 5w/2=20 | | -7m+4m+10m=15-2m | | 3x2=7 | | P=1/4q^2+30 | | 7/8u=4 | | v/3-9=7 | | 30=5x+8 | | -7(7-2x)-6(1+8x)=-55 | | 3/4a=1464 | | -5(8n+6)-2(1-3n)=-32 | | 3(n+2)-7(n+7=-35 | | w+1/3=1/4 | | 25=5/6u | | 34=-4(7x+1)-2(1+6x) | | 3u/2=15 | | 34=-4(7x+1)-2(1+6x | | 13/x+4=3x+2 |